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The conventional one-term partition function of free internal rotation (so far 
the only means used in the literature for evaluation of the thermodynamics 
of  this motion) shows incorrect limit behavior for low temperatures and /or  
small values of  reduced moments of  inertia. This situation is particularly 
pertinent to van der Waals molecules and hydrogen bonded systems. Con- 
sequences of  the application of the newly suggested improved formulae for 
the heat content function, entropy, and heat capacity have been analyzed for 
(H2)2, (N2)2, C1F.HF, HF.C1F, HCN.HC1, HCN.DC1, (H20)2 , CF3H.OH2, 
CC13H.OH2, and cyclopropane.H20. Considerable changes in the values of 
thermodynamic or kinetic characteristics of  the systems have been found when 
applying the new formulae. Relations to the results available with the exact 
partition function of the free internal rotation have been analyzed. Consequen- 
ces of  the new approach for the recently performed theoretical evaluation of 
anesthetic activity based on the conventional formula are briefly discussed. 

Key words: Free internal rotation in molecular complexes - -  Thermodynamics 
t h e r e o f - - R i g o r o u s  and approximative partition functions of free internal 
r o t a t i on - -App l i ca t i on  of 0 3 f u n c t i o n s - - v a n  der Waals and hydrogen- 
bonded dimers 

I. Introduction 

Recently there has been a considerable progress in theoretical and conceptual 
studies of  molecular complexes, namely of van der Waals molecules [1-3] and 

* Dedicated to Professor Camille Sandorfy on the occasion of his 65th birthday 
** Part XXVII in the series Multi-Molecular Clusters and Their Isomerism; Part XXVI, see [52] 
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hydrogen bonded systems [4-6]. A gradual transition from the traditional treat- 
ment in terms of structure-potential energy to descriptions considering all types 
of motions possible in the given system represents one of the advances in this 
field. Thus an ever increasing number of papers dealing with theoretical studies 
of weak intermolecular interactions include and evaluate such terms as entropy, 
temperature or time effects. For various molecular complexes equilibrium [7-12] 
as well as rate characteristics [12-14] are extracted from potential energy hyper- 
surface(s). Studies of this type are focusing their interest on the construction of 
partition functions themselves. Recently, the quality of existing formulae for the 
partition functions of various quantum models [15-24] has been examined and 
improved. In fact, even in the case of the usual simple textbook models a rigorous 
(but still manageable) formula exists quite rarely [25], for instance for the partition 
function of the harmonic oscillator. Unusual applications or special requirements 
with respect to accuracy can frequently necessitate the development of formulae 
with a higher degree of sophistication than that of the conventional ones. This 
was, e.g., the case of the partition function of the rigid overall rotation of a linear 
[26] or nonlinear [27-29] molecule. 

It can be supposed, and it was proved [30-34] in several cases by theoretical as 
well as experimental techniques, that in weak molecular complexes there are 
frequently one or even several internal degrees of freedom which may be described 
(at least at some temperatures) as free internal rotation. It was, moreover, pointed 
out [35, 36] that for such systems the conventional formula [37, 38] for the 
partition function of free internal rotation cannot be applied. Thus, a new 
approach has to be developed. The present paper deals with such an improved 
partition function of the free internal rotation and its application to the evaluation 
of thermochemical characteristics of weak molecular complexes: heat content 
function, entropy, heat capacity, and equilibrium and rate constants. 

2. Outline of methodology 

The conventional formula [37, 38] q(o ~r) for the partition function of free internal 
rotation of a single top against a rigid frame is given by: 

q~o~r) = n  \ = ,(o~>0), (1) 

where I is the reduced moment of inertia,, n is the internal rotation symmetry 
number; the other symbols have their usual significance. However, this approxi- 
mation, q(o nr), is not quite satisfactory as it gives the value 0, instead of the correct 
1, when or-> oo (i.e., low temperatures and/or  low reduced moments of inertia). 
It was shown [35, 36] that this breakdown of the q(o ~r) approximation is a result 
of the impossibility to approximate the summation through integration when 
deriving Eq. (1) under these limit conditions in the conventional textbook manner. 
Two improved approximations (which may be used in practice) can be introduced 
[35, 36], namely: 

q~n~) = + 1, (2) 
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q~r) = + 1 + e -~ - Cb(o'Va), (3) 

where 4) denotes the well-known error function. Clearly enough, the approxima- 
tions (2), (3) exhibit the physically correct limit behavior for o-~ oo. 

Within these three approximations of the partition function of the free internal 
rotation the contributions of this motion to the molar heat content function, 
H(fir) <i,  read: 

H(rfi,~)/(R T) = �89 (4) 

H ~ [ ) / ( R T ) -  q(ofir) (5) 
2q~nr) ' 

H~)/ (RT)=q~r- - -s[ l (~) l /2+e-~176 (6) 

while for the contribution S(rfi[ ) to the molar entropy term holds generally: 

S(Tfi,[)/R = l n  qI~r)+H~[)/(RT), (i=O, 1 or2).  (7) 

Finally, the contributions of the free internal rotation to the molar heat capacity 
f~(fir) at, e.g., constant pressure, ,--p.T.~, are in the three approximations given by: 

C(fir) / o  _! 
, , ~ , o / ~ -  - ~, ( 8 )  

/--(fir) / D  - -  q(~ ttO~(fir)/~(fir)~,t/0 --~- t/l~(fir)'~} 
" ~ P , T , 1 / 1 ~ "  - -  q~fir) 4q[fir) 2 , (9) 

C(fi~) / o  1 v,T,2/~,, = H~;) / ( R T ) - [ H~;)/ ( R T ) ]2 + q(fir) 

1 ~r 1/2 1 e -  ~ . 
• +~ + o'2e -~ - ~( t r  1/2) (10) 

Clearly enough, Eqs. (8)-(10) can equally well be applied to the contributions 
of the free internal rotation to the molar heat capacity at constant volume. 
Moreover, the contributions (4)-(10) are independent of the choice of a standard 
state with the standard overall thermodynamic terms. 

The results (1)-(10) allow the evaluation of any important equilibrium or rate 
characteristic of a species with a free-internal-rotation degree of freedom or of 
a process including such a species. Remarkably enough, all the above formulae 
are expressed in a (reduced) form in terms of  the dimensionless quantity o-. 

3. Systems studied 

To thoroughly study the approximations ql fir) and their applicability to evaluation 
of thermodynamic or kinetic characteristics, ten molecular complexes, either van 
der Waals molecules or hydrogen bonded systems, were chosen (Table 1). Each 
of these species was studied earlier in a theoretical and /or  experimental way and 
its structural features were. described. Mostly, a very low or negligible barrier to 
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Table 1. Examples of contributions H ~  ) of free internal rotation to the heat content function evaluated 
within the studied q~ approximations for the selected molecular complexes 

(J mol -l) 
1048I 

Complex a (kgm 2) n ql n~ 50 K 100 K 200 K 298.15 K 500 K 

q(o ~r) 208 b 416 u 831 b 1240 b 2079 b 
(Hz) 2 [39] 2.30 2 q(2 nr) 0.005 6 224 740 1985 

q~llr) 67 167 405 665 1247 
(N2) 2 [40] 70.1 2 q~nr~ 225 434 847 1253 2089 

q~fir) 150 327 698 1072 1854 
C1F.HF [30, 41] 0.282 1 q~r) 5 • 10 -9 0.008 11 120 892 

q~fir) 52 133 332 555 1064 
HF.C1F [30, 41] 0.662 1 q~r~ 0.03 14 314 884 2103 

q~nr) 70 174 419 686 1281 
HCN.HC1 [42] 0.607 1 q(2 fir) 0.01 8 257 796 2034 

q~nr) 68 169 410 673 1260 
HCN.DCI [42] 1.04 1 q(a nr~ 2 84 625 1222 2271 

q~nr) 81 197 466 754 1388 
(H20)2 [43] 8.23 1 q(2 fir) 222 452 871 1276 2110 

q~fir) 133 298 650 1009 1767 
CF3H.OH 2 [31,36] 18.9 6 q~r~ 0.002 3 174 644 1889 

q~fir) 65 162 395 651 1224 
CCI3H.OH z [31, 36] 19.1 6 q(2 fir) 0.002 4 179 654 1899 

q~fir) 65 163 396 652 1226 
C3H6.OH 2 [31, 36] c 18.6 6 q(a n~) 0.001 3 166 628 1871 

q~nr~ 64 162 394 649 1220 

a The reference indicates source of structural data 
b Results in the q(0 a~l approximation are independent of the substance nature 
c C3H6_cyclopropane (throughout the article) 

i n t e r n a l  r o t a t i o n  was  i n d i c a t e d  wi th  these  sys tems so tha t  free i n t e r n a l  r o t a t i on  

can  be  pos tu l a t ed .  The  wa te r  d i mer  is an  ex cep t i on  - here  a ba r r i e r  o f  a b o u t  

1 kJ m o l - i  was  f o u n d  [13]. The  la t ter  sys tem was a d d e d  to i n c l u d e  the  s impl i f ied  
P i t z e r - G w i n n  a p p r o a c h  to res t r ic ted i n t e r n a l  r o t a t i o n  [44]. M oreove r ,  t he rm o-  

d y n a m i c s  o f  s o m e  o f  the  m e m b e r s  of  the  set was  a l r eady  eva lua t ed  w i t h i n  the  
q(o fir) a p p r o a c h  [30 ,31] .  R e d u c e d  m o m e n t s  of  ine r t i a  I a n d  i n t e r n a l  r o t a t i on  

s y m m e t r y  n u m b e r s  n are  ava i l ab le  f rom the  s t ruc tu ra l  i n t e r m e d i a t e s  u s ing  the  
s t a n d a r d  gene ra l  t r e a t m e n t  sugges ted  for  a n  u n s y m m e t r i c a l  top  a t t a ched  to a 
r ig id  f rame  b y  Pitzer  [45] - see Tab le  1. W i t h i n  ou r  set the  I va lues  as wel l  as 
the  (decis ive)  ra t io  I / n  2 vary  w i th in  th ree  orders  o f  m a g n i t u d e .  Never the less ,  

there  are also sys tems in  the  set the  h igh  s y m m e t r y  n u m b e r  o f  w h i c h  leads  to the  
lowest  i n c l u d e d  I~  n 2 va lues  in  spite o f  the  re la t ive ly  h igh  I va lues  themse lves ,  

n a m e l y  the  associa tes  C F 3 H . O H : ,  CC13H.OH2, a n d  C3H6.OHz. The  s y m m e t r y  
n u m b e r  (i.e., 6) o f  the  la t te r  species  deserves  a c o m m e n t .  The  th ree - fo ld  s y m m e t r y  
of  the  la rger  c o m p o n e n t  o f  the  associa tes  is a p p a r e n t l y  s l ight ly d i s to r ted  d u r i n g  
the  assoc ia te  f o r m a t i o n .  However ,  n is i n t r o d u c e d  [38] in  such  a way  tha t  the  
t e rm  o f  2 7 r / n  w o u l d  be  a p e r i o d  of  the  p o t e n t i a l  f u n c t i o n  in  the  h i n d e r e d  r o t a t i o n  
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case. With respect to geometry relaxation in the course of internal rotation it is 
thus more appropriate to consider 6 as the symmetry number in the case. 

4. Results and discussion 

Let us start to discuss the problem without reference to any particular species 
but in terms of the dimensionless parameter o- instead (Fig. 1). It is apparent 
that in all four cases studied (i.e. ~(~) qi , H~i ) /  ( RT) ,  OT, it(fir)/D/,,, and C(p~,~i/ R ) the 
differences for tr~  ce between q(o ~) and q(2 tlr) approaches are tremendous and 
increasing with increasing o- (while there is a convergency between q~r) and q(2 ~) 
approximations). A quite fruitful illustration of  these differences is supplied by 
the entropy term: the conventional term S ~  ) continuously decreases towards 
values of  -co ,  i.e. for some tr values negative entropy contributions appear (this 
being, of course, a methodical artefact). On the other hand, there is a convergency 
between all the three approaches studied for or ~ 0. For the exact partition function 
of free internal rotation Q(~r) the following inequality can be derived: 

q(o fi~)- 1 < Q(fir)< q~fir), (11) 

which is visualized in Fig. 1, too. 

Values of  the enthalpy H ~  ) term evaluated within the set of  five selected 
temperatures are presented in Table 1. The largest deviation between q(o fir) and 
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Fig. 1. The dependences of functions "|"'k,...,..'l 
q,, H ~ r ) / ( R T ) ,  S(rfi,~)/R, and r~(fir)/o ~ p,T, i l  a" 0.25- 
evaluated within the q(o fir) (Eq. (1), 
straight l ine),  q~r) (Eq. (2), dashed 
curve), and q(llr) (Eq. (3), solid curve) 
approaches on the dimensionless para- 
meter cr (see Eq. (1)); with the qi 
dependence the other dashed curve o.o- , 
indicates the function (q(o~T)-l) (cf. 1~ 1~ 101 1o"3 
Eq. (11)) o 
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q~n~'~ approximations is exhibited with the CIF.HF complex at a temperature of 
500K, namely l187Jmo1-1. In most cases the difference attains a value of 
hundreds of J mol-1; its smallest value is found with (N2)2 at 500 K: 10 J mo1-1. 
In the area studied the results derived from q~)  usually differ considerably from 
the other two approximations. Table 2 indicates comparable conditions for S ~  } 
terms, the largest deviation b e t w e e n  q(o fir) and q~n~) approaches being found again 
with C1F.HF at 500 K: 1080 J mol -~. Remarkably enough, the negative entropy 
contribution in  q(o fir) approximation appears not only at 50 K but also at 100 K. 
Finally, differences in the heat capacity contribution caused by applying the 
different approaches are again far from being negligible (Table 3). Within the 
samples studied the largest differences in C~n,~-},i terms evaluated in qCon~} and q~} 
approximations appear at the temperature of 50 K, for most substances being 

Table 2. Examples of contributions S ~  r) of  free internal rotation to the entropy term evaluated within 
the studied q~ approximations for the selected complexes 

(J K -1 mol-1) 

Complex ~ q~fir) 50 K 100 K 200 K 298.15 K 500 K 

(H2) 2 q~r} 0.0001 0.07 1.43 3.50 6.69 
q~fir) 4.56 5.93 7.56 8.62 10.11 
q{0 fir) --2.05 0.83 3.71 5.37 7.52 

(N2)2 q{2 fir) 12.17 15.07 17.93 19.58 21.73 
q~r) 13.69 16.13 18.70 20.22 22.22 
q{o ~) 12.15 15.03 17.91 19.57 21.72 

CIF.HF q{2 ~r) 1 x 10 -~~ 9 x 10 -5 0.06 0.49 2.39 
q~r) 3.42 4.53 5.89 6.79 8.09 
q{o ~ -5.02 -2.14 0.75 2.41 4.55 

HF.C1F q~r) 0.0006 0.16 2.07 4.37 7.51 
q~r) 4.82 6.24 7.93 9.01 10.53 
q(o ~r) --1.47 1.41 4.29 5.95 8.10 

HCN.HCI q~nr) 0.0002 0.10 1.66 3.83 7.01 
q~fir) 4.66 6.05 7.70 8.77 10.27 
q{o ~r) -1.83 1.05 3.93 5.59 7.74 

HCN.DC1 q(2 ~r) 0.04 1.04 4.68 7.12 9.82 
q~} 5.71 7.30 9.15 10.32 11.94 
q~o ~) 0.40 3.28 6.16 7.82 9.97 

(H20)2 q ~ )  8.67 11.90 14.81 16.46 18.59 
q ~ )  11.20 13.47 15.91 17.36 19.30 
q{o ~) 9.00 11.88 14.77 16.43 18.58 

CFaH.OH 2 q~z ~) 3 x 10 -5 0.04 1.09 2.97 6.15 
q~fir) 4.40 5.74 7.34 8.38 9.84 
q(o fir) -2.43 0.45 3.34 4.99 7~14 

CC13H.OH 2 q~fi~) 4• 10 -5 0.04 1.12 3.02 6.21 
q~r} 4.42 5.76 7.36 8.40 9.86 
q(o fir) -2.39 0.49 3.37 5.03 7.18 

CaH6.OH2 q~} 3 x 10 -5 0.03 1.04 2.88 6.06 
q~r) 4.38 5.71 7.30 8.33 9.79 
q~o ~) -2.49 0.39 3.27 4.93 7.08 

a For the reduced moments of inertia and internal-rotation symmetry numbers - see Table 1 
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p(fir) Table 3. Examples of contributions ~p,T,~ of free internal rotation to the heat capacity at constant 
pressure evaluated within the studied q~ approximations for the selected molecular complexes 

C(f•r) p,T,i 
(J K -1 mol-1) 

Complex ~ q ~ )  50 K 100 K 200 K 298.15 K 500 K 

q~o ~) 4.16 ~ 4.16 b 4.16 b 4.16 b 4.166 
(H2)2 q~2 ~) 0,001 0.44 4.07 6.03 5.92 

q~fi~) 1.79 2.17 2.54 2,75 2,99 
(N2) 2 q(~r) 4,28 4.13 4.13 4.14 4.15 

q ~ )  3.42 3.62 3.77 3.84 3.91 
C1F.HF q ~ )  3 • 10 -9 0.001 0.39 1.99 5.29 

q~t ~/ 1.42 1.78 2.16 2.37 2.65 
HF.CIF q~z ~) 0.007 0.84 4.95 6,26 5,62 

q ~ )  1.87 2.24 2.62 2,82 3.05 
HCN.HCI q~2 n~) 0.003 0.57 4.42 6.15 5.8l 

q ~ )  1,82 2.20 2.57 2.77 3.02 
HCN.DCI q ~ )  0.25 3.36 6.28 5.77 4.77 

q~nr) 2.11 2.49 2.84 3.02 3.24 
(H20)a q ~ )  5.17 4.31 4.14 4.13 4.14 

q~n~) 3.15 3.40 3.60 3,70 3.80 
CFaH.OH~ q ~ )  0.0005 0.27 3.46 5.75 6,08 

q ~ )  1.74 2.12 2.49 2,70 2,95 
CC13H.OHa q ~ )  0.0005 0.28 3.52 5.78 6.07 

q~fir) 1.75 2.12 2,50 2.71 2.96 
CsH6-OH2 q(2 ~r) 0.0004 0.24 3,35 5.69 6.11 

q~fir) 1.73 2.11 2,49 2,69 2.94 

For the reduced moments of  inertia and internal-rotation symmetry numbers - see Table I 
b Results in the q(0 fir) approximation are independent of the substance nature and temperature 

close to the value of 4.16 J K -1 mo1-1. For all the three thermodynamic functions 
two common conclusions can be drawn from the results in Tables 1-3. First, the 
replacement of the conventional, still frequently used approximation qr ~) by the 
approximation q ~ )  affects the values of  the thermodynamic functions, at least 
at low and moderate temperatures, in a way which is comparable or even more 
significant than the anticipated values of the corrections for the deviations from 
the rigid rotator and harmonic oscillator model [46], i.e. the model on which at 
present most thermodynamic and kinetic evaluations in the field are based. 
Second, at very low temperatures, t h e  q(o fir) approach yields results which are 
principally wrong within the Boltzmann framework: H~)/T equals R/2 instead 

t,~ (fir) of zero, S ~  ) approaches - ~  instead of zero, and ~p,r,o equals to R/2 instead 
of zero. 

While the qr ~r) approximation is apparently handicapped when compared to q~nr) 
_(fir) 

and ql , it is still not clear which one of the latter approximations should be 
preferred. From the framework [35, 36] of  the q~r) derivation is is clear that this 
approximation works well in the regions of large and low o- values, however for 
o- ~ 1 its quality may be questionable; this is connected with the structure of the 
Laplace method [47] used in the derivation [35, 36]. The exact partition function 
of free internal rotation Q(~) can be correlated with one class of elliptic functions, 
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name ly  with a special  case o f  theta  funct ions  [48], viz. 0 3 funct ions  o f  the zero 
a rgument  03(0, q): 

Q(nr) = 03(0 , q), (12) 

where  the p a r a m e t e r  q is re la ted  to o- by:  

q=e-'L (13) 

The func t ion  03(0, q) is re la ted  to the comple te  e l l ip t ic  integrals  o f  the  first k ind  
K(k) with the  modu lus  k [48]: 

03(0, q) = ( ~ ) , / 2 ,  (14) 

where  the  in te r re la t ion  be tween  q and  k reads:  

7rK ((1 - k 2 )  1/2) (15) 
In q -- K(k) 

Numer i ca l  t echniques  for  the eva lua t ion  o f  the  comple te  e l l ip t ic  integrals  o f  the  
first k ind  are ava i lab le  [48]. Moreover ,  me thods  for the  eva lua t ion  o f  Q(fir) ( and  
its g -der iva t ives )  th rough  direct  summat ion  with a re l iable  r e s iduum es t imat ion  
are u n d e r  s tudy  [49]. I t  shou ld  give a poss ib i l i ty ,  inter  alia,  to s tudy  local  ex t rema  

t~(fir) [/~ (Fig.  1). Such local  ex t rema  canno t  a found  on H~)/(RT) and  ,~p,T,2/l, curves 
pr ior i  be exc luded  on the t empe ra tu r e  d e p e n d e n c e s  o f  t h e r m o d y n a m i c  funct ions  
(cf., e.g., [50]); they are  however  ra ther  rare. 

F r o m  our  po in t  o f  view, the cases with a re la t ively  low I/n 2 te rm are most  
interest ing.  Such cond i t ions  can be es tab l i shed  ei ther  by  re la t ively  m e d i u m  I 
values  c o m b i n e d  with a h igher  symmet ry  or  by  re la t ively  low values  themselves .  
The la t ter  s i tua t ion  can f requent ly  occur  toge ther  with quas i - l inear i ty  in the 
a r r angemen t  o f  the complex .  The p rec i s ion  o f  theore t ica l  ca lcula t ions  of  the 
dev ia t ion  f rom l inear i ty  can ha rd ly  be be t te r  than  units  o f  the angle  degree.  Table  
4 i l lustrates  that  such a smal l  var ia t ion  o f  the equ i l ib r ium value  of  a character is t ic  

Table 4. Dependence of the entropy contribution S ~  ) of free internal rotation evaluted in the q2 
approximation on the deviation from linearity a in C1F.HF and HF.CIF van der Waals complexes 

CIF.HF HF.CIF 

s~ s~  
(J K -x mol-l) (J K -1 mo1-1) 

LHFF ~_ CIFF 
(o) 100 K 298.15 K 500 K (~ 100 K 298.15 K 500 K 

5.2 1 x 10 13 0.0008 0.07 0.7 4 • 10 -12 0.002 0.12 
7.2 2 • 10 - 6  0.14 1.22 1.2 0.001 1.08 3.66 
8.2 b 9 x 10 -5 0.49 2.39 1.7 b 0.16 4.37 7.51 
9.2 0.001 1.11 3.70 2.7 2.42 8.82 11.26 

11.2 0.04 2.93 6.11 3.7 5.06 10.92 13.15 

a Deviation from linearity of quasilinear triad of atoms in the complexes: ~HFF and ~_C1FF for 
C1F.HF and HF.CIF isomer, resp.; see schemes in [30] 
b Equilibrium value [30] 
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angle  can cause  d rama t i c  var ia t ions  in the  co r r e spond ing  values  o f  the t he rmody-  
namic  funct ions .  Consequent ly ,  different  q u a n t u m - c h e m i c a l  me thods  used  for  
the eva lua t ion  o f  equ i l ib r ium structures can p r o d u c e  a quite p r o n o u n c e d  var ia t ion  
in the con t r ibu t ions  o f  free in ternal  ro ta t ion  to t h e r m o d y n a m i c  funct ions.  
However ,  this effect might  be par t ly  c o m p e n s a t e d  using a p r o p e r  t r ea tment  o f  
the  cor re la t ion  be tween  in terna l  and  overal l  ro ta t ion  (essent ia l ly  neglec ted  here).  

Let  us finish this art icle with an example  o f  prac t ica l  nature .  To s tudy anaes the t i c  

act ivi ty  S a n d o r f y  et al. [31] descr ibed  t h e r m o d y n a m i c s  o f  three  equ i l ib r ium 
processes  (Table  5) of  the  type:  

(H20)2 q- A ~,~ A.OH2 + H20  , (16) 

using q(o fir) a p p r o x i m a t i o n  for  the eva lua t ion  o f  free in ternal  ro ta t ion  found  in 
A.OH2 complexes .  One can  ask whether  the app l i ca t i on  o f  more  soph i s t i ca ted  
q(2 fir) a p p r o x i m a t i o n  will inf luence the values  [31] o f  the equ i l ib r ium constants  K 

o f  the processes  (16) and  the reasoning  [31] based  on them. The results  in Table  
5 can give an answer.  Fo r  the eva lua t ion  o f  anes the t ic  act ivi ty o f  var ious  species,  
a r educed  extent  a of  reac t ion  (16) can be employed :  

CA.OH 2 l + z - [ ( 1 - z ) Z + 4 z / K ]  1/2 

a =  cO = 2 ( 1 - 1 / K )  ' (17) 

where  CA.OH2 denotes  the  equ i l ib r ium concen t ra t ion  o f  the A.OH2 associate ,  
c ~  o and c ~ and  0 Z =  A /  (H20) 2, C(H20)2 denotes  the star t ing [31] concen t ra t ions  o f  

Table 5. Reevaluated equilibrium data for model anaesthetic processes 

log K ~ 

100K 298K 

Process q~o fir~~ q(2 fi~) q(o fir)r q(2 fir) 

(H20) 2 + CF 3H ~.~ CF3H.OH 2 + H20 
(H20)2+ CC13H ~--- CC13H.OH2+ H20 
(H20) 2 + Can 6 ~- C 3H6.OH2 + n20 

-2.92 (-3.13) -2.93 -1.33 (-1.51) -1.51 
0.79 (0.47) 0.66 -0.39 (-0.62) -0.62 

-8.77 (-8.67) -8.47 -1.01 (-0.90) -0.90 

Otb 

100K 298K 

Process q(o fir)~ q(2 fi,) q(ofi,) c q(2fir) 

(H20)2 + CF3H ~ CF3H.OH 2 + H20 
(H20)2+ CC13H ~ CCI3H.OH2+ H20 
(H20)2+ C3H 6 ~ C3H6.OH2 + H20 

3.4 (2.7) 3.3 17.8 (14.9) 14.9 
71.3 (63.2) 68.2 39.0 (32.9) 32.9 
0.004 (0.005) 0.006 23.8 (26.2) 26.2 

a K = PA.oH~PH~_o/ (PfH20)2PA) ,  where Px denotes equilibrium pressure (or concentration) of species 
X; standard state choice is the same for all the components (e.g. an ideal gas at 101325 Pa 
pressure) 
b a - reduced extent of reaction related to the starting amount of species (H20)2 (in %) for z = 1 
c In the first column the values according to [31] are given, in parentheses the data derived within 
the same approximation in this work (see Table 1 and 2) are presented 
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species A and ( H 2 0 ) 2  , resp. For the purposes of Table 5, the value z = 1 was 
straightforwardly used, though it does not necessarily correspond to conditions 
in vivo. It is apparent from Table 5 that the transition from q(o nr~ to q(2 fir) approxima- 
tion moderately changes the a values at 100 K, but it is unimportant at room 
temperature. Consequently, the qualitative conclusions of [31] would not have 
been changed by the application of the more sophisticated q(2 fir) approach. It is 
not important in our connections that our I values may slightly differ from the 
values originally used [31] (I  and n values are not specified in [31]). Remarkably 
enough, within the cases studied application of the q~r) approach has a non- 
uniform effect on the stability of A.OH2 associate when compared with q(o fir) data: 
both an increase as well as decrease of stability follows (however, the decrease 
is so small that in Table 5 it is swamped by rounding off). 

5. Concluding remarks 

The present study points out considerable errors in thermodynamic functions of 
species with free internal rotation(s) caused by the application of the simple 
conventional formula (1) in the region of low temperatures and/or  low I / n  2 

values. The conclusions are important for a further study of molecular complexes 
not only in the equilibrium but also in kinetic situations [13, 51]. As it is, of 
course, hard to believe that any system has a zero barrier height with regard to 
a very low temperature, connections of our problem with hindered internal 
rotation should be explored. The usefulness of the results for a simplified approxi- 
mation I of the partition function of hindered internal rotation suggested by Pitzer 
and Gwinn [44] is apparent. The correction terms connected with the transition 
from q(o ~) to q~r) approximation should also be added to thermodynamic func- 
tions derived in the Pitzer-Gwinn approach t to hindered internal rotation. This 
is the case of systems (H2)2, (N2)2, and (H20)2 from our set and the recently 
derived data [39, 40, 43]. Finally, all our reasoning is limited to Boltzmann 
statistics. With low temperatures we should, however, use the Fermi-Dirac or 
Bose-Einstein statistics (whichever is appropriate). 
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